skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoon, Hyung-Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The deep neural network (DNN) model for computer vision tasks (object detection and classification) is widely used in autonomous vehicles, such as driverless cars and unmanned aerial vehicles. However, DNN models are shown to be vulnerable to adversarial image perturbations. The generation of adversarial examples against inferences of DNNs has been actively studied recently. The generation typically relies on optimizations taking an entire image frame as the decision variable. Hence, given a new image, the computationally expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while taking into account the underlying physical dynamics of autonomous vehicles, their mission, and the environment. The article presents a multi-level reinforcement learning framework that can effectively generate adversarial perturbations to misguide autonomous vehicles’ missions. In the existing image attack methods against autonomous vehicles, optimization steps are repeated for every image frame. This framework removes the need for fully converged optimization at every frame. Using multi-level reinforcement learning, we integrate a state estimator and a generative adversarial network that generates the adversarial perturbations. Due to the reinforcement learning agent consisting of state estimator, actor, and critic that only uses image streams, the proposed framework can misguide the vehicle to increase the adversary’s reward without knowing the states of the vehicle and the environment. Simulation studies and a robot demonstration are provided to validate the proposed framework’s performance. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026
  2. Free, publicly-accessible full text available January 3, 2026
  3. Free, publicly-accessible full text available January 3, 2026
  4. Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis. 
    more » « less
  5. We propose a reinforcement learning framework where an agent uses an internal nominal model for stochastic model predictive control (MPC) while compensating for a disturbance. Our work builds on the existing risk-aware optimal control with stochastic differential equations (SDEs) that aims to deal with such disturbance. However, the risk sensitivity and the noise strength of the nominal SDE in the riskaware optimal control are often heuristically chosen. In the proposed framework, the risk-taking policy determines the behavior of the MPC to be risk-seeking (exploration) or riskaverse (exploitation). Specifcally, we employ the risk-aware path integral control that can be implemented as a Monte-Carlo (MC) sampling with fast parallel simulations using a GPU. The MC sampling implementations of the MPC have been successful in robotic applications due to their real-time computation capability. The proposed framework that adapts the noise model and the risk sensitivity outperforms the standard model predictive path integ 
    more » « less